EVALUATING TRIGONOMETRIC EXPRESSIONS

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Here we will see how we evaluate trigonometric expressions.

The table will be very helpful, when evaluating trigonometric functions.

trigonometrictable

Converting radian to degree :

π = 180

π/2 = 90

π/3 = 60

π/4 = 45

π/6 = 30

3π/2 = 270

5π/4 = 225

2π/3 = 120

If the angle measure is more than 180 degree, then using ASTC formula, we can find the value of given trigonometric function.

Without using a calculator, evaluate:

Problem 1 :

sin² 60˚

Solution :

sin² 60˚ = (√3/2)²

sin² 60˚ = 3/4

Problem 2 :

sin 30˚ cos 60˚

Solution :

sin 30˚ cos 60˚ = (1/2) (1/2)

sin 30˚ cos 60˚ = 1/4

Problem 3 :

4sin 60˚ cos 30˚

Solution :

4sin 60˚ cos 30˚ = 4(√3/2) (√3/2)

= 4(3/4)

4sin 60˚ cos 30˚ = 3

Problem 4 :

1 - cos² (π/6)

Solution :

1 - cos² (π/6) = 1 - (√3/2)²

= 1 - 3/4

1 - cos² (π/6) = 1/4

Problem 5 :

sin² (2π/3) - 1

Solution :

= sin² (2π/3) - 1

sin 2π/3 = sin 120

= sin (90 + 30)

= cos 30

sin 2π/3 =  √3/2

sin² (2π/3) - 1 = (√3/2)² - 1

= 3/4 - 1

sin² (2π/3) - 1 = -1/4

Problem 6 :

cos² (π/4) - sin (7π/6)

Solution :

cos (π/4) = cos 45

= 1/√2

sin 7π/6 = sin 210

= sin (180 + 30)

= -sin 30

= -1/2

cos² (π/4) - sin (7π/6) = (1/√2)² - (-1/2)

= 1/2 + 1/2

cos² (π/4) - sin (7π/6) = 1

Problem 7 :

sin (3π/4) - cos (5π/4)

Solution :

sin 3π/4 = sin 135

= sin (90 + 45)

= cos 45

= 1/√2

sin 5π/4 = sin 225

= sin (180 + 45)

= -cos 45

= -1/√2

sin (3π/4) - cos (5π/4) = (1/√2) - (-1/√2)

= 1/√2 + 1/√2

sin (3π/4) - cos (5π/4) = √2

Problem 8 :

1 - 2 sin² (7π/6)

Solution :

sin 7π/6 = sin 210

= sin (180 + 30)

= -sin 30

= -1/2

1 - 2 sin² (7π/6) = 1 - 2(-1/2)²

= 1 - 2(1/4)

1 - 2 sin² (7π/6) = 1/2

Problem 9 :

cos² (5π/6) - sin² (5π/6)

Solution :

cos (5π/6) = cos 150

= cos (90 + 60)

= -sin 60

cos (5π/6) = -√3/2

sin (5π/6) = sin 150

= sin (90 + 60)

= cos 60

sin (5π/6) = 1/2

cos² (5π/6) - sin² (5π/6) = (-√3/2)² - (1/2)²

= 3/4 - 1/4

cos² (5π/6) - sin² (5π/6) = 1/2

Problem 10 :

tan² (π/3) - 2sin² (π/4)

Solution :

tan π/3 = tan 60 = √3

sin π/4 = sin 45 = 1/√2

tan² (π/3) - 2sin² (π/4) = (√3)² - 2(1/√2)²

= 2 - 2(1/2)

tan² (π/3) - 2sin² (π/4) = 2

Problem 11 :

2 tan (-5π/4) - sin (3π/2)

Solution :

tan (-5π/4) = - tan 225

= - tan (180 + 45)

= - tan 45

= - 1

sin (3π/2) = sin 270

= sin (180 + 90)

= -sin 90

= -1

tan (-5π/4) - sin (3π/2) = 2(-1) - (-1)

= -2 + 1

2tan (-5π/4) - sin (3π/2) = -1

Problem 12 :

2tan 150˚ / (1 - tan² 150˚)

Solution :

tan 150˚= tan (90 + 60)

= -cot 60

= -1/tan 60

= -1/√3

2tan 150˚ / 1 - tan² 150˚ = 2(-1/√3) / 1 - (-1/√3)²

= -2/√3 / 1 - (1/3)

= -2/√3 / 2/3

= (-2/√3) (3/2)

= -3/√3

2tan 150˚ / 1 - tan² 150˚ = -√3

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More