Here we will see how we evaluate trigonometric expressions.
The table will be very helpful, when evaluating trigonometric functions.
Converting radian to degree :
π = 180 π/2 = 90 π/3 = 60 π/4 = 45 π/6 = 30 |
3π/2 = 270 5π/4 = 225 2π/3 = 120 |
If the angle measure is more than 180 degree, then using ASTC formula, we can find the value of given trigonometric function.
Without using a calculator, evaluate:
Problem 1 :
sin² 60˚
Solution :
sin² 60˚ = (√3/2)²
sin² 60˚ = 3/4
Problem 2 :
sin 30˚ cos 60˚
Solution :
sin 30˚ cos 60˚ = (1/2) (1/2)
sin 30˚ cos 60˚ = 1/4
Problem 3 :
4sin 60˚ cos 30˚
Solution :
4sin 60˚ cos 30˚ = 4(√3/2) (√3/2)
= 4(3/4)
4sin 60˚ cos 30˚ = 3
Problem 4 :
1 - cos² (π/6)
Solution :
1 - cos² (π/6) = 1 - (√3/2)²
= 1 - 3/4
1 - cos² (π/6) = 1/4
Problem 5 :
sin² (2π/3) - 1
Solution :
= sin² (2π/3) - 1
sin 2π/3 = sin 120
= sin (90 + 30)
= cos 30
sin 2π/3 = √3/2
sin² (2π/3) - 1 = (√3/2)² - 1
= 3/4 - 1
sin² (2π/3) - 1 = -1/4
Problem 6 :
cos² (π/4) - sin (7π/6)
Solution :
cos (π/4) = cos 45 = 1/√2 |
sin 7π/6 = sin 210 = sin (180 + 30) = -sin 30 = -1/2 |
cos² (π/4) - sin (7π/6) = (1/√2)² - (-1/2)
= 1/2 + 1/2
cos² (π/4) - sin (7π/6) = 1
Problem 7 :
sin (3π/4) - cos (5π/4)
Solution :
sin 3π/4 = sin 135 = sin (90 + 45) = cos 45 = 1/√2 |
sin 5π/4 = sin 225 = sin (180 + 45) = -cos 45 = -1/√2 |
sin (3π/4) - cos (5π/4) = (1/√2) - (-1/√2)
= 1/√2 + 1/√2
sin (3π/4) - cos (5π/4) = √2
Problem 8 :
1 - 2 sin² (7π/6)
Solution :
sin 7π/6 = sin 210
= sin (180 + 30)
= -sin 30
= -1/2
1 - 2 sin² (7π/6) = 1 - 2(-1/2)²
= 1 - 2(1/4)
1 - 2 sin² (7π/6) = 1/2
Problem 9 :
cos² (5π/6) - sin² (5π/6)
Solution :
cos (5π/6) = cos 150 = cos (90 + 60) = -sin 60 cos (5π/6) = -√3/2 |
sin (5π/6) = sin 150 = sin (90 + 60) = cos 60 sin (5π/6) = 1/2 |
cos² (5π/6) - sin² (5π/6) = (-√3/2)² - (1/2)²
= 3/4 - 1/4
cos² (5π/6) - sin² (5π/6) = 1/2
Problem 10 :
tan² (π/3) - 2sin² (π/4)
Solution :
tan π/3 = tan 60 = √3
sin π/4 = sin 45 = 1/√2
tan² (π/3) - 2sin² (π/4) = (√3)² - 2(1/√2)²
= 2 - 2(1/2)
tan² (π/3) - 2sin² (π/4) = 2
Problem 11 :
2 tan (-5π/4) - sin (3π/2)
Solution :
tan (-5π/4) = - tan 225 = - tan (180 + 45) = - tan 45 = - 1 |
sin (3π/2) = sin 270 = sin (180 + 90) = -sin 90 = -1 |
tan (-5π/4) - sin (3π/2) = 2(-1) - (-1)
= -2 + 1
2tan (-5π/4) - sin (3π/2) = -1
Problem 12 :
2tan 150˚ / (1 - tan² 150˚)
Solution :
tan 150˚= tan (90 + 60)
= -cot 60
= -1/tan 60
= -1/√3
2tan 150˚ / 1 - tan² 150˚ = 2(-1/√3) / 1 - (-1/√3)²
= -2/√3 / 1 - (1/3)
= -2/√3 / 2/3
= (-2/√3) (3/2)
= -3/√3
2tan 150˚ / 1 - tan² 150˚ = -√3
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM