EVALUATING LIMITS BY FACTORING

Finding a limit by factoring is a technique to find limit by cancelling out common factors.

If we apply limit without factoring and cancelling the common terms, we may get indeterminant form as answers. So, doing possible simplification is important.

Evaluate the following limits. Show all work.

Problem 1 :

x ⇾ 6 x2 - 36x - 6

Solution :

Given, x ⇾ 6 x2 - 36x - 6= x ⇾ 6 x2 - 62x - 6= x ⇾ 6 (x + 6) (x - 6)x - 6= x ⇾ 6 x + 6= 6 + 6= 12

Problem 2 :

x ⇾ 3 9 - x23 - x

Solution :

Given, x ⇾ 3 9 - x23 - x= x ⇾ 3 32 - x23 - x= x ⇾ 3 (3 + x) (3 - x)3 - x= x ⇾ 3 3 + x= 3 + 3= 6

Problem 3 :

x ⇾ -1 x + 1x2 + 2x + 1

Solution :

Given, x ⇾ -1 x + 1x2 + 2x + 1= x ⇾ -1 x + 1(x + 1)2= x ⇾ -1 1x + 1= 1-1 + 1= 10

Does not exist.

Problem 4 :

x ⇾ 3 x2 - 3xx2 - 4x + 3

Solution :

Given, x ⇾ 3 x2 - 3xx2 - 4x + 3= x ⇾ 3 x(x - 3)(x - 1) (x - 3)= x ⇾ 3 xx - 1= 33 - 1= 32

Problem 5 :

x ⇾ 7 x - 7x2 - 49

Solution :

Given, x ⇾ 7 x - 7x2 - 49= x ⇾ 7 x - 7x2 - 72= x ⇾ 7 x - 7(x + 7) (x - 7)= x ⇾ 7 1x + 7= 17 + 7= 114

Problem 6 :

x ⇾ 2 x + 2x3 + 8

Solution :

Given, x ⇾ 2 x + 2x3 + 8= x ⇾ 2 x + 2x3 + 23= 2 + 223 + 8= 2 + 28 + 8= 416= 14

Problem 7 :

x ⇾ 2 2x + 46 + 3x

Solution :

Given, x ⇾ 2 2x + 46 + 3x= x ⇾ 2 2(x + 2)3(2 + x)= x ⇾ 2 = 23

Problem 8 :

x ⇾ 0 2x - 122x - 1

Solution :

Given, x ⇾ 0 2x - 122x - 1= x ⇾ 0 2x - 12x2 - 1= x ⇾ 0 2x - 12x2 - 12= x ⇾ 0 2x - 12x - 1 2x + 1= x ⇾ 0 12x + 1= 120 + 1= 11 + 1= 12

Problem 9 :

x ⇾ 2 3x2 - 4x - 42x2 - 8

Solution :

Given,x ⇾ 2 3x2 - 4x - 42x2 - 8= x ⇾ 2 (x - 2) (3x + 2)2x2 - 4= x ⇾ 2 (x - 2) (3x + 2)2x2 - 22= x ⇾ 2 (x - 2) (3x + 2)2x+ 2 (x - 2)= x ⇾ 2 3x + 22(x + 2)= 3(2) + 22(2 + 2)= 88= 1

Problem 10 :

x ⇾ 2 x2 + x - 6x - 2

Solution :

Given,x ⇾ 2 x2 + x - 6x - 2= x ⇾ 2 (x + 3) (x - 2)x - 2= x ⇾ 2 x + 3= 2 + 3= 5

Problem 11 :

x ⇾ 8 x3 - 64xx - 8

Solution :

Given,x ⇾ 8 x3 - 64xx - 8= x ⇾ 8 xx2 - 64x - 8= x ⇾ 8 xx2 - 82x - 8= x ⇾ 8 x(x + 8) (x - 8)x - 8= x ⇾ 8 x(x + 8)= 8(8 + 8)= 8(16)= 128

Problem 12 :

x ⇾ 3 3x - 912 - 4x

Solution :

Given,x ⇾ 3 3x - 912 - 4x= x ⇾ 3 3(x - 3)4(3 - x)= x ⇾ 3 -3(3 - x)4(3 - x)= x ⇾ 3 -34= -34

Problem 13 :

x ⇾ 3 x3 - 27x - 3

Solution :

Given,x ⇾ 3 x3 - 27x - 3= x ⇾ 3 x3 - 33x- 3= x ⇾ 3 (x - 3) x2 + 3x + 9x - 3= x ⇾ 3 x2 + 3x + 9= 32 + 3(3) + 9= 9 + 9 + 9= 27

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More