To evaluate the numerical expression, we need to know the order of operations.
What is an Order of Operations?
An Order of Operations is a rule that can be used to simplify or evaluate more than one operation.
There are many types of rules, we will use here the PEMDAS Rule.
Example 1 :
(20 + 80 ÷ 2 × 8) ÷ [(54 ÷ 9 + 14) ÷ 4]
Solution :
= (20 + 80 ÷ 2 × 8) ÷ [(54 ÷ 9 + 14) ÷ 4] = (20 + 40 × 8) ÷ [(6 + 14) ÷ 4] = (20 + 320) ÷ [20 ÷ 4] = (20 + 320) ÷ 5 = 340 ÷ 5 = 68 |
P( ), D P( ), M & A P( ), [ ], A & D P( ), A D |
Example 2 :
3 × [64 ÷ (13 - 5) - 4] × 42 ÷ 6
Solution :
= 3 × [64 ÷ (13 - 5) - 4] × 42 ÷ 6 = 3 × [64 ÷ 8 - 4] × 42 ÷ 6 = 3 × [8 - 4] × 42 ÷ 6 = 3 × 4 × 42 ÷ 6 = 12 × 42 ÷ 6 = 504 ÷ 6 = 84 |
P( ), S P[ ], D P[ ], S M M D |
Example 3 :
{24 ÷ [(8 × 3) ÷ 4] × 2} × (15 - 4)
Solution :
= {24 ÷ [(8 × 3) ÷ 4] × 2} × (15 - 4) = {24 ÷ [24 ÷ 4] × 2} × 11 = {24 ÷ 6 × 2} × 11 = {4 × 2} × 11 = 8 × 11 = 88 |
P( ), M & S P[ ], D P{ }, D P{ }, M M |
Example 4 :
[5 × (54 ÷ 6 - 3)] + 6 × 2 - 60
Solution :
= [5 × (54 ÷ 6 - 3)] + 6 × 2 - 60 = [5 × (9 - 3)] + 6 × 2 - 60 = [5 × 6] + 6 × 2 - 60 = 30 + 6 × 2 - 60 = 30 + 12 - 60 = 42 - 60 = -18 |
P( ), D P( ), S P[ ], M M A S |
Example 5 :
(78 - 6) ÷ {18 × [(7 - 8) × 2]}
Solution :
= (78 - 6) ÷ {18 × [(7 - 8) × 2]} = 72 ÷ {18 × [-1 × 2]} = 72 ÷ {18 × (-2)} = 72 ÷ (-36) = - 2 |
P( ), S P[ ], M P{ }, M D |
Example 6 :
{96 ÷ [36 ÷ 3 - (18 × 2 - 30)]} ÷ (31 - 16 + 1)
Solution :
= {96 ÷ [36 ÷ 3 - (18 × 2 - 30)]} ÷ (31 - 16 + 1) = {96 ÷ [36 ÷ 3 - (36 - 30)]} ÷ (15 + 1) = {96 ÷ [36 ÷ 3 - 6]} ÷ 16 = {96 ÷ [12 - 6]} ÷ 16 = {96 ÷ 6} ÷ 16 = 16 ÷ 16 = 1 |
P(), M&S P(), S&A P[ ], D P[ ], S P{ }, D D |
Example 7 :
2 × {11 + [2 × (10 - 15 + 8 × 3)] + 1}
Solution :
= 2 × {11 + [2 × (10 - 15 + 8 × 3)] + 1} = 2 × {11 + [2 × (-5 + 24)] + 1} = 2 × {11 + [2 × 19] + 1} = 2 × {11 + 38 + 1} = 2 × 50 = 100 |
P( ), M&S P( ), S P[ ], M P{ }, A M |
Example 8 :
45 ÷ 15 × [(21 - 18) × (5 + 4 × 2) - 49]
Solution :
= 45 ÷ 15 × [(21 - 18) × (5 + 4 × 2) - 49] = 45 ÷ 15 × [3 × (5 + 8) - 49] = 45 ÷ 15 × [3 × 13 - 49] = 45 ÷ 15 × [39 - 49] = 45 ÷ 15 × (-10) = 3 × (-10) = -30 |
P( ), S&M P( ), A P[ ], M P[ ], S D M |
Example 9 :
9 ÷ 3 × {2 × [(16 × 4) ÷ 8]}
Solution :
= 9 ÷ 3 × {2 × [(16 × 4) ÷ 8]} = 9 ÷ 3 × {2 × [64 ÷ 8]} = 9 ÷ 3 × {2 × 8} = 3 × 16 = 48 |
P( ), M P[ ], D P{ }, M M |
Example 10 :
100 - {4 × [3 × (19 + 1) ÷ 4]}
Solution :
= 100 - {4 × [3 × (19 + 1) ÷ 4]} = 100 - {4 × [3 × 20 ÷ 4]} = 100 - {4 × [3 × 5]} = 100 - {4 × 15} = 100 - 60 = 40 |
P( ), A P[ ], D P[ ], M P{ }, M S |
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM