DOUBLE ANGLE FORMULAS FOR SINE COSINE AND TANGENT

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

Double angle formula :

sin 2ΞΈ = 2 sin ΞΈ  cos ΞΈ

cos 2ΞΈ = cos2ΞΈ - sin2ΞΈ

cos 2ΞΈ = 2cos2ΞΈ - 1

cos 2ΞΈ = 1 - 2 sin2ΞΈ

tan 2ΞΈ = 2tan ΞΈ / (1 - tan2 ΞΈ)

sin 2ΞΈ = 2tan ΞΈ / (1 + tan2 ΞΈ)

cos 2ΞΈ = (1 - tan2 ΞΈ) / (1 + tan2 ΞΈ)

Evaluate :

Problem 1 :

1-2sin25πœ‹8

Solution:

=1-2sin25πœ‹8∴cos 2πœƒ=1-2sin2πœƒ=cos2Γ—5πœ‹8=cos5πœ‹4=cosπœ‹+πœ‹4=-cosπœ‹4=-22=-222=-12

Problem 2 :

Express as a single sine or cosine function.

a) 40sin x cos x

Solution:

= 40sin x cos x

= 20 Γ— 2sin x cosx

[∴ sin2x = 2sin x cosx]

= 20 sin2x

b) cos23x - sin23x

Solution:

= cos23x - sin23x

  [∴ cos2x- sin2x= cos 2x] 

= cos(2 Γ— 3x)

= cos 6x

c)

8 sinx2 cosx2

Solution:

=8 sinx2cosx2=4Γ—2sinx2cosx2=4Γ—sin2Γ—x2=4 sin x

Problem 3 :

If sin 2πœƒ = 3/4, then sin3πœƒ + cos3πœƒ = 

a) βˆš5/8        b) βˆš7/8          c) βˆš11/8          d) 5√7/16

Solution:

sin3πœƒ=(sin πœƒ+cos πœƒ) sin2πœƒ-sinπœƒ cosπœƒ+cos2πœƒ=(sinπœƒ+cosπœƒ) 1-sin 2πœƒ2(sinπœƒ+cosπœƒ)2=sin2πœƒ+cos2πœƒ+2sinπœƒ cosπœƒ=1+sin 2πœƒsinπœƒ+cosπœƒ=1+sin 2πœƒ=1+sin 2πœƒ1-sin 2πœƒ2=1+341-342=72Γ—58=5716

Problem 4 :

cos πœƒ = 1/3 and 0Β° < πœƒ < 90Β°. Find sin 2πœƒ.

Solution:

sin2ΞΈ + cos2ΞΈ = 1

sin πœƒ=1-cos2πœƒ=1-132=1-19=89sin πœƒ=223sin 2πœƒ=2 sinπœƒ cosπœƒ=2Γ—13Γ—223sin 2πœƒ=429

Problem 5 :

cos πœƒ =4/5 and 270Β° < πœƒ < 360Β°. Find sin 2πœƒ.

Solution:

cos πœƒ =4/5

sin 2πœƒ = 2 sinπœƒ cosπœƒ

sin2πœƒ = 1 - cos2πœƒ

=1-452=1-1625=925sin πœƒ=Β±35

Since πœƒ is in IV quadrant, sin πœƒ is negative.

sin πœƒ=-35sin 2πœƒ=2 sinπœƒ cosπœƒ=2-3545=-2425

Problem 6 :

cot πœƒ=43 and πœ‹<πœƒ<3πœ‹2. Find sin 2πœƒ

Solution:

cot πœƒ = 4/3

t is an angle of a right triangle that has 3 sides.

Opposite = 3

Adjacent = 4

hypotenuse = 5

Since πœƒ lies in the third quadrant, for the trigonometric ratios tangent and cotangent only we will be having positive, for the other trigonometric ratios will be having negative sign.

sin πœƒ=-35cos πœƒ=-45sin 2ΞΈ=2 sinΞΈ cosΞΈ=2-35-45=2425

Problem 7 :

cot πœƒ=43 and πœ‹<πœƒ<3πœ‹2. Find cot 2πœƒ

Solution:

cot 2πœƒ=cot2πœƒ-12 cotπœƒ=432-12Γ—43=169-183=16-9983=79Γ—38=724

Verifying Identities Double Angle Formulas

Problem 8 :

Verify that cos4x - sin4x = cos 2x

Solution:

cos4x - sin4x = cos 2x

Here we have LHS = cos4x - sin4x

cos4x - sin4x = (cos2x)2 - (sin2x)2

= (cos2x + sin2x) (cos2x - sin2x)

= 1  (cos2x - sin2x)

= cos 2x

Hence, cos4x - sin4x = cos 2x is proved.

Problem 9 : 

Verify that sin 2x = -2 sin x  sin (x - 90)

Solution:

sin 2x = 2 sin x cos x -----(1)

We know that cos x = sin (90 - x)

cos x = sin (-(x - 90))

cos x = -sin (x - 90)

Applying the value of cos x above in (1), we get

sin 2x = 2 sin x(-sin (x - 90))

= -2 sin x sin (x - 90)

Hence it is proved.

Problem 10 :

cos 2πœƒ is not equal to 

a) 2 cos2πœƒ - 1     b) 1 - 2 sin2πœƒ

c) 1+tan2πœƒ1-tan2πœƒd) 1-tan2πœƒ1+tan2πœƒ

Solution:

cos 2πœƒ = cos2πœƒ - sin2πœƒ

sin2πœƒ + cos2πœƒ = 1

sin2πœƒ = 1 - cos2πœƒ

cos2πœƒ = 1 - sin2πœƒ

cos 2πœƒ = 1 - sin2πœƒ - sin2πœƒ

= 1 - 2sin2πœƒ

cos 2πœƒ = cos2πœƒ - (1 - cos2πœƒ)

= cos2πœƒ - 1 + cos2πœƒ

= 2 cos2πœƒ - 1

cos 2πœƒ = cos2πœƒ - sin2πœƒ

cos 2πœƒ=cos2πœƒ1-sin2πœƒcos2πœƒcos 2πœƒ=1-tan2πœƒsec2πœƒ=1-tan2πœƒ1+tan2πœƒ

So, option (C) is correct.

Problem 11 :

If sin A + cos A = 1, then sin 2A is equal to

a) 1     b) 2          c) 0        d) 1/2

Solution:

sin A + cos A = 1

Squaring on both sides.

(sin A + cos A)2 = 1

sin2A + cos2A + 2sinA cosA = 1

1 + sin 2A = 1

sin 2A = 0

So, option (C) is correct.

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More