Subscribe to our βΆοΈ YouTube channel π΄ for the latest videos, updates, and tips.
Double angle formula :
sin 2ΞΈ = 2 sin ΞΈ cos ΞΈ
cos 2ΞΈ = cos2ΞΈ - sin2ΞΈ
cos 2ΞΈ = 2cos2ΞΈ - 1
cos 2ΞΈ = 1 - 2 sin2ΞΈ
tan 2ΞΈ = 2tan ΞΈ / (1 - tan2 ΞΈ)
sin 2ΞΈ = 2tan ΞΈ / (1 + tan2 ΞΈ)
cos 2ΞΈ = (1 - tan2 ΞΈ) / (1 + tan2 ΞΈ)
Evaluate :
Problem 1 :
Solution:
Problem 2 :
Express as a single sine or cosine function.
a) 40sin x cos x
Solution:
= 40sin x cos x
= 20 Γ 2sin x cosx
[β΄ sin2x = 2sin x cosx]
= 20 sin2x
b) cos23x - sin23x
Solution:
= cos23x - sin23x
[β΄ cos2x- sin2x= cos 2x]
= cos(2 Γ 3x)
= cos 6x
c)
Solution:
Problem 3 :
If sin 2π = 3/4, then sin3π + cos3π =
a) β5/8 b) β7/8 c) β11/8 d) 5β7/16
Solution:
Problem 4 :
cos π = 1/3 and 0Β° < π < 90Β°. Find sin 2π.
Solution:
sin2ΞΈ + cos2ΞΈ = 1
Problem 5 :
cos π =4/5 and 270Β° < π < 360Β°. Find sin 2π.
Solution:
cos π =4/5
sin 2π = 2 sinπ cosπ
sin2π = 1 - cos2π
Since π is in IV quadrant, sin π is negative.
Problem 6 :
Solution:
cot π = 4/3
t is an angle of a right triangle that has 3 sides.
Opposite = 3
Adjacent = 4
hypotenuse = 5
Since π lies in the third quadrant, for the trigonometric ratios tangent and cotangent only we will be having positive, for the other trigonometric ratios will be having negative sign.
Problem 7 :
Solution:
Verifying Identities Double Angle Formulas
Problem 8 :
Verify that cos4x - sin4x = cos 2x
Solution:
cos4x - sin4x = cos 2x
Here we have LHS = cos4x - sin4x
cos4x - sin4x = (cos2x)2 - (sin2x)2
= (cos2x + sin2x) (cos2x - sin2x)
= 1 (cos2x - sin2x)
= cos 2x
Hence, cos4x - sin4x = cos 2x is proved.
Problem 9 :
Verify that sin 2x = -2 sin x sin (x - 90)
Solution:
sin 2x = 2 sin x cos x -----(1)
We know that cos x = sin (90 - x)
cos x = sin (-(x - 90))
cos x = -sin (x - 90)
Applying the value of cos x above in (1), we get
sin 2x = 2 sin x(-sin (x - 90))
= -2 sin x sin (x - 90)
Hence it is proved.
Problem 10 :
cos 2π is not equal to
a) 2 cos2π - 1 b) 1 - 2 sin2π
Solution:
cos 2π = cos2π - sin2π
sin2π + cos2π = 1
sin2π = 1 - cos2π
cos2π = 1 - sin2π
cos 2π = 1 - sin2π - sin2π
= 1 - 2sin2π
cos 2π = cos2π - (1 - cos2π)
= cos2π - 1 + cos2π
= 2 cos2π - 1
cos 2π = cos2π - sin2π
So, option (C) is correct.
Problem 11 :
If sin A + cos A = 1, then sin 2A is equal to
a) 1 b) 2 c) 0 d) 1/2
Solution:
sin A + cos A = 1
Squaring on both sides.
(sin A + cos A)2 = 1
sin2A + cos2A + 2sinA cosA = 1
1 + sin 2A = 1
sin 2A = 0
So, option (C) is correct.
Subscribe to our βΆοΈ YouTube channel π΄ for the latest videos, updates, and tips.
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM