COMPLEX NUMBERS WORKSHEET

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

Choose the correct or the most suitable answer from the given four alternatives :

Problem 1 :

in + in + 1 + in+ 2 + in + 3 is

(1)  0   (2)  1  (3)  -1  (4)  i

Solution

Problem 2 :

The value of 13n = 1in + in - 1 is

(1)  1 + i    (2)  i   (3)  1   (4)   0

Solution

Problem 3 :

The area of the triangle formed by the complex numbers z, iz, and z + iz in the Argand’s diagram is

(1)  1/2 |z|2   (2)  |z|2    (3)  3/2  |z|2   (4)  2|z|2

Solution

Problem 4 :

The conjugate of a complex numbers is 1/(I - 2). Then, the complex number is

(1) 1i + 2
(3) -1i - 2
(2) -1i + 2
(4) 1i - 2

Solution

Problem 5 :

If z = 3 + i3(3i + 4)2(8 + 6i)2, then |z| is equal to

(1)   0   (2)  1  (3)  2  (4)  3

Solution

Answer Key

1)  0, option (1)

2)  i + 1, option (1)

3)   1/2 Γ— |z|2, option (1)

4)  z = -1/(i + 2), option (2)

5)  2, option 3.

Problem 1 :

If z is a non zero complex number, such that 2iz2 = zΜ„ then |z| is

(1)   1/2    (2)   1   (3)  2  (4)  3

Solution

Problem 2 :

If |z – 2 + i| ≀ 2, then the greatest value of |z| is

(1)√3 - 2  (2)  √3 + 2  (3)  √5 - 2  (4) √5 + 2

Solution

Problem 3 :

If |z – 3/z| = 2, then the least value of |z| is

(1)1  (2)  2  (3)  3  (4)  5

Solution

Problem 4 :

If |z| = 1, then the value of (1 + z)/(1 + zΜ„) is

(1)  z   (2)  zΜ„   (3)  1/z  (4)  1

Solution

Problem 5 :

The solution of the equation |z| - z = 1 + 2i is

(1) 32 - 2i
(2) -32 + 2i
(3) 2 -32i
(4) 2 + 32i

Solution

Answer Key

1)  |z| = 1/2, option (1)

2)  2 + βˆš5, So, option (4)

3)  The last value is 1, option (1)

4)  z, option (1)

5) z = 3/2 - 2i, option (1)

Problem 1 :

If |z1| = 1, |z2| = 2, |z3| = 3 and |9z1z2 + 4z1z3 + z2z3| = 12, then the value of |z1 + z2 + z3| is

(1)   1   (2)   2   (3)   3   (4)   4

Solution

Problem 2 :

If z is a complex number such that z Ο΅ β„‚ \ ℝ and z + 1/z Ο΅ ℝ, then |z| is

(1)   0   (2)   1   (3)   2   (4)   3

Solution

Problem 3 :

z1, z2 and z3 are complex numbers such that z1 + z2 + z3 = 0 and |z1| = |z2| = |z3| = 1 then z12 + z22 + z32 is

(1)  3   (2)   2   (3)   1   (4)   0

Solution

Problem 4 :

If (z - 1)/(z + 1) is purely imaginary, then |z| is 

(1)   1/2    (2)   1   (3)   2   (4)   3

Solution

Problem 5 :

If z = x + iy is a complex number such that |z + 2| = |z - 2|, then the locus of z is

(1)   real axis   (2)   imaginary axis   (3)   ellipse   (4)   circle

Solution

Answer Key

1) |z1 + z2 + z3| = 2, option (2)

2)  |z| = 1, option (2)

3)  z12 + z22 + z32 = 0, option (4)

4)  |z| = 1, option (2)

5)  x = 0, option (2)

Problem 1 :

The principal argument of 3/(-1 + i) is

(1) -5πœ‹6
(2) -2πœ‹3
(3) -3πœ‹4
(4) -πœ‹2

Solution

Problem 2 :

The principal argument of (sin 40ΒΊ + i cos 40ΒΊ)5 is

(1)  -110ΒΊ    (2)   -70ΒΊ   (3)   70ΒΊ   (4)   110ΒΊ

Solution

Problem 3 :

If (1 + i) (1 + 2i) (1 + 3i) … (1 + ni) = x + iy, then 2 β‹… 5 β‹… 10 … (1 + n2) is

(1)1   (2)   i   (3)   x2 + y2    (4)   1 + n2

Solution

Problem 4 :

If ω ≠ 1 is a cubic root of unity (1 + ω)7 = A + Bω, then (A, B) equals

(1)   (1, 0)   (2)   (-1, 1)  (3)   (0,1)   (4)   (1, 1)

Solution

Problem 5 :

The principal argument of the complex number 1 + i324i1 - i3 is
(1) 2πœ‹3
(2) πœ‹6
(3) 5πœ‹6
(4) πœ‹2

Solution

Answer Key

1)  -3πœ‹/4, option (3)

2)  ΞΈ = -110ΒΊ, option (3)

3)  2 Β· 5 Β· 10 .... 1 + n2 = x2 + y2, option (3)

4)  (A, B) = (1, 1), option (4)

5)  πœƒ = πœ‹/2, option (4)

Problem 1 :

If Ξ± and Ξ² are the roots of x2 + x + 1 = 0, then Ξ±2020 + Ξ²2020 is

(1)   -2   (2)  -1    (3)    1   (4)   2

Solution

Problem 2 :

The product of all four values of cos πœ‹3 + i sin πœ‹334is

(1)   -2   (2)   -1    (3)   1    (4)  2

Solution

Problem 3 :

If Ο‰ β‰  1 is a cubic root of unity and 1111-Ο‰2 - 1Ο‰21Ο‰2Ο‰7 = 3k, then k is equal to

(1)   1    (2)  -1   (3)  βˆš3i    (4)   -√3i

Solution

Problem 4 :

The value of 1 + 3i1 - 3i10is
(1) cis 2πœ‹3
(2) cis 4πœ‹3
(3) -cis 2πœ‹3
(4) -cis 4πœ‹3

Solution

Problem 5 :

If πœ” = cis 2πœ‹3, then the number of distinct roots of z + 1πœ”πœ”2πœ”z + Ο‰2 1πœ”21z + Ο‰ = 0

Solution

Answer Key

1)  -1, option (2)

2)  1, option (2)

3)  -√3 i, option (4)

4)  cis 2πœ‹/3, option (1)

5)  z = 0, option (1)

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More