Subscribe to our βΆοΈ YouTube channel π΄ for the latest videos, updates, and tips.
Choose the correct or the most suitable answer from the given four alternatives :
Problem 1 :
in + in + 1 + in+ 2 + in + 3 is
(1) 0 (2) 1 (3) -1 (4) i
Problem 2 :
(1) 1 + i (2) i (3) 1 (4) 0
Problem 3 :
The area of the triangle formed by the complex numbers z, iz, and z + iz in the Argandβs diagram is
(1) 1/2 |z|2 (2) |z|2 (3) 3/2 |z|2 (4) 2|z|2
Problem 4 :
The conjugate of a complex numbers is 1/(I - 2). Then, the complex number is
|
|
|
Problem 5 :
(1) 0 (2) 1 (3) 2 (4) 3
1) 0, option (1)
2) i + 1, option (1)
3) 1/2 Γ |z|2, option (1)
4) z = -1/(i + 2), option (2)
5) 2, option 3.
Problem 1 :
If z is a non zero complex number, such that 2iz2 = zΜ then |z| is
(1) 1/2 (2) 1 (3) 2 (4) 3
Problem 2 :
If |z β 2 + i| β€ 2, then the greatest value of |z| is
(1)β3 - 2 (2) β3 + 2 (3) β5 - 2 (4) β5 + 2
Problem 3 :
If |z β 3/z| = 2, then the least value of |z| is
(1)1 (2) 2 (3) 3 (4) 5
Problem 4 :
If |z| = 1, then the value of (1 + z)/(1 + zΜ) is
(1) z (2) zΜ (3) 1/z (4) 1
Problem 5 :
The solution of the equation |z| - z = 1 + 2i is
|
|
|
|
|
|
1) |z| = 1/2, option (1)
2) 2 + β5, So, option (4)
3) The last value is 1, option (1)
4) z, option (1)
5) z = 3/2 - 2i, option (1)
Problem 1 :
If |z1| = 1, |z2| = 2, |z3| = 3 and |9z1z2 + 4z1z3 + z2z3| = 12, then the value of |z1 + z2 + z3| is
(1) 1 (2) 2 (3) 3 (4) 4
Problem 2 :
If z is a complex number such that z Ο΅ β \ β and z + 1/z Ο΅ β, then |z| is
(1) 0 (2) 1 (3) 2 (4) 3
Problem 3 :
z1, z2 and z3 are complex numbers such that z1 + z2 + z3 = 0 and |z1| = |z2| = |z3| = 1 then z12 + z22 + z32 is
(1) 3 (2) 2 (3) 1 (4) 0
Problem 4 :
If (z - 1)/(z + 1) is purely imaginary, then |z| is
(1) 1/2 (2) 1 (3) 2 (4) 3
Problem 5 :
If z = x + iy is a complex number such that |z + 2| = |z - 2|, then the locus of z is
(1) real axis (2) imaginary axis (3) ellipse (4) circle
1) |z1 + z2 + z3| = 2, option (2)
2) |z| = 1, option (2)
3) z12 + z22 + z32 = 0, option (4)
4) |z| = 1, option (2)
5) x = 0, option (2)
Problem 1 :
The principal argument of 3/(-1 + i) is
|
|
|
|
|
|
Problem 2 :
The principal argument of (sin 40ΒΊ + i cos 40ΒΊ)5 is
(1) -110ΒΊ (2) -70ΒΊ (3) 70ΒΊ (4) 110ΒΊ
Problem 3 :
If (1 + i) (1 + 2i) (1 + 3i) β¦ (1 + ni) = x + iy, then 2 β 5 β 10 β¦ (1 + n2) is
(1)1 (2) i (3) x2 + y2 (4) 1 + n2
Problem 4 :
If Ο β 1 is a cubic root of unity (1 + Ο)7 = A + BΟ, then (A, B) equals
(1) (1, 0) (2) (-1, 1) (3) (0,1) (4) (1, 1)
Problem 5 :
|
|
|
|
|
|
1) -3π/4, option (3)
2) ΞΈ = -110ΒΊ, option (3)
3) 2 Β· 5 Β· 10 .... 1 + n2 = x2 + y2, option (3)
4) (A, B) = (1, 1), option (4)
5) π = π/2, option (4)
Problem 1 :
If Ξ± and Ξ² are the roots of x2 + x + 1 = 0, then Ξ±2020 + Ξ²2020 is
(1) -2 (2) -1 (3) 1 (4) 2
Problem 2 :
(1) -2 (2) -1 (3) 1 (4) 2
Problem 3 :
(1) 1 (2) -1 (3) β3i (4) -β3i
Problem 4 :
|
|
|
|
|
|
Problem 5 :
1) -1, option (2)
2) 1, option (2)
3) -β3 i, option (4)
4) cis 2π/3, option (1)
5) z = 0, option (1)
Subscribe to our βΆοΈ YouTube channel π΄ for the latest videos, updates, and tips.
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM