CLASSIFYING A CONIC FROM ITS GENERAL EQUATION

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Equation of Circle

Equation of Parabola

The variable which is not having square, then the parabola is symmetric about that particular axis.

Equation of Ellipse

  • If a2 is greater then, the ellipse will be symmetric about x-axis.
  • If b2 is greater then, the ellipse will be symmetric about y-axis.

Equation of Hyperbola

Equation of hyperbola which is symmetric about x-axis.

Equation of hyperbola which is symmetric about y-axis.

Put each of the following equations in standard form and classify the conic.

Problem 1 :

9y2 – x2 + 2x + 54y + 62 = 0

Solution :

9y2 – x2 + 2x + 54y + 62 = 0

9y2 – x2 + 2x + 54y = -62

9y2 + 54y – x2 + 2x = -62

9(y2 + 6y) – (x2 - 2x) = -62

9[(y + 3)2 - 32] – [(x - 1)2 - 12] = -62

9[(y + 3)2 - 9] – (x - 1)2 + 1 = -62

9 (y + 3)2 + 81 – (x - 1)2 + 1 = -62

9 (y + 3)2  – (x - 1)2 + 82 = -62

9 (y + 3)2  – (x - 1)2 = -62 - 82

9 (y + 3)2  – (x - 1)2 = -144

Dividing by -144, we get 

(x - 1)2/144 - (y + 3)2 / 16 = 1

It is in the form of (x - h)2/a2 - (y - k)2 / b2 = 1

It is a hyperbola.

Problem 2 :

4x2 + y2 - 8x + 4y - 16 = 0

Solution :

4x2 + y2 - 8x + 4y - 16 = 0

4x2 - 8x + y2 + 4y = 16

4(x2 - 2x) + (y2 + 4y) = 16

4 [(x - 1)+ 1] + [(y + 2)2 - 22] = 16

4 [(x - 1)+ 1] + [(y + 2)2 - 4] = 16

4 (x - 1)+ 4 + (y + 2)2 - 4 = 16

4 (x - 1)+ (y + 2)2 = 16

Dividing by 16, we get

(x - 1)2/4 + (y + 2)2/16 = 1

It is in the form of (x - h)2/a2 + (y - k)2 / b2 = 1

It is a ellipse

Problem 3 :

x2 + y2 + 6x - 4y + 12 = 0

Solution :

x2 + y2 + 6x - 4y + 12 = 0

x2 + 6x + y2 - 4y + 12 = 0

(x + 3)2 - 32 + (y - 2)- 22 + 12 = 0

(x + 3)2 - 9 + (y - 2)- 4 + 12 = 0

(x + 3)2 + (y - 2)- 13 + 12 = 0

(x + 3)2 + (y - 2)- 1 = 0

(x + 3)2 + (y - 2) = 1

It is in the form of (x - h)2 + (y - k)= r2

It is a circle.

Problem 4 :

x2 - 2y + 16x + 28 = 0

Solution :

x2 - 2y + 16x + 28 = 0

2y = x2 + 16x + 28

2y = (x + 4)2 - 42 + 28

2y = (x + 4)2 - 16 + 28

2y = (x + 4)2  + 12

y = (1/2) (x + 4)2  + 6

It is in the form, y = 4a (x - h)2 + k

So, it is parabola.

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More