ALGEBRAIC IDENTITIES

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

An algebraic identity is an equality that remains true regardless of the values chosen for its variables. Algebraic identities can be used to get the expansion of a polynomial for the given exponent.

Expansion of Binomial

(a + b)2 = a2 + 2ab + b2

(a - b)2 = a2 - 2ab + b2

(a + b)(a - b) = a2 - b2

(x + a)(x + b) = x2 + (a + b)x + ab

Expand the following using the algebraic identities above :

Example 1 :

(3x + 4y)2

Solution :

We have 

(a + b)2 = a2 + 2ab + b2

Substitute a = 3x and b = 4y.

(3x + 4y)2(3x)2 + 2(3x)(4y) + (4y)2

32x2 + 2(3x)(4y) + 42y2

= 9x2 + 24xy + 16y2

Example 2 :

(2p - 3q)2

Solution :

We have

(a - b)2 = a2 - 2ab + b2

Substitute a = 2p and b = 3q.

(2p - 3q)2 = (2p)2 - 2(2p)(3q) + (3q)2

= 22p2 - 12pq + 32q2

= 4p2 - 12pq + 9q2

Example 3 :

(5x + 4y)(5x - 4y)

Solution :

We have 

(a + b)(a - b) = a2 - b2

Substitute a = 5x and b = 4y.

(5x + 4y)(5x - 4y) = (5x)2 - (4y)2

52x2 - 42y2

= 25x2 - 16y2

Example 4 :

(m + 3)(m + 5)

Solution :

We have 

(x + a)(x + b) = x2 + (a + b)x + ab

Substitute x = m, a = 3 and b = 5.

(m + 3)(m + 5) = m2 + (3 + 5)m + (3)(5)

= x2 + 8m + 15

Example 5 :

(m - 7)(m + 2)

Solution :

We have 

(x + a)(x + b) = x2 + (a + b)x + ab

Substitute x = m, a = -7 and b = 7.

(m - 7)(m + 2) = m2 + (-7 + 2)m + (-7)(2)

= m2 - 5m - 14

Expansion of Trinomial

Expansion of (a + b + c)2 :

We know that 

(x + y)2 = x2 + 2xy + y2

Substitute x = a + b and y = c.

(a + b + c)2 = (a + b)2 + 2(a + b)c + c2

= a2 + 2ab + b2 + 2ac + 2bc + c2

= a2 + b2 + c+ 2ab + 2bc + 2ac

Thus,

(a + b + c)= a2 + b2 + c+ 2ab + 2bc + 2ac

Example 6 :

Expand (a - b + c)2.

Solution :

We have 

(a + b + c)2 = = a2 + b2 + c+ 2ab + 2bc + 2ac

Replace 'b' by '-b'.

(a + (-b) + c)2 = = a2 + (-b)2 + c+ 2a(-b) + 2(-b)c + 2ac

(a - b + c)2 = = a2 + b2 + c- 2ab - 2bc + 2ac

Example 7 :

Expand (a + b - c)2.

Solution :

We have 

(a + b + c)2 = = a2 + b2 + c+ 2ab + 2bc + 2ac

Replace 'c' by '-c'.

(a + b + (-c))2 = = a2 + b2 + (-c)+ 2ab + 2b(-c) + 2a(-c)

(a + b + (-c))2 = = a2 + b2 + c+ 2ab - 2bc - 2ac

Example 8 :

Expand (a - b - c)2.

Solution :

We have 

(a + b + c)2 = = a2 + b2 + c+ 2ab + 2bc + 2ac

Replace 'b' by '-b' and 'c' by '-c'.

(a + (-b) + (-c))2 = = a2 + (-b)2 + (-c)+ 2a(-b) + 2(-b)(-c) + 2a(-c)

(a - b - c)2 = = a2 + b2 + c- 2ab + 2bc - 2ac

Example 9 :

Expand (2x + 3y + 4z)2.

Solution :

We have 

(a + b + c)2 = = a2 + b2 + c+ 2ab + 2bc + 2ac

Substitute a = 2x, b = 3y and c = 4z.

(2x + 3y + 4z)2 = (2x)2 + (3y)2 + (4z)+ 2(2x)(3y) + 2(3y)(4z) + 2(2x)(4z)

= 22x2 + 32y2 + 42z+ 12xy + 24yz + 16xz

= 4x2 + 9y2 + 16z+ 12xy + 24yz + 16xz

Example 10 :

Find the area of square whose side length is (3p + 2q - 4r).

Solution :

Area of Square :

= side x side

= (3p + 2q - 4r)(3p + 2q - 4r)

= (3p + 2q - 4r)2

We know that

(a + b + c)2 = = a2 + b2 + c+ 2ab + 2bc + 2ac

Substitute a = 3p, b = 2q and c = -4r.

(3p + 2q + (-4r)2 = (3p)2 + (2q)2 + (-4r)+ 2(3p)(2q) + 2(2q)(-4r) + 2(3p)(-4r)

= 9p2 + 4q2 + 16r+ 12pq - 16qr - 24pr

Therefore, Area of Square = [9p2 + 4q2 + 16r+ 12pq - 16qr - 24pr] square units.

Identities involving Product of Three Binomials

Expansion of (x + a)(x + b)(x + c) :

(x + a)(x + b)(x + c) = [(x + a)(x + b)](x + c)

= [x2 + (a + b)x + ab](x + c)

= x2(x) + (a + b)(x)(x) + ab(x) + x2(c) + (a + b)(x)(c) + ab(c)

= x3 + ax2 + bx+ abx + cx2 + acx + bcx + abc

= x3 + (a + b + c)x2 + (ab + bc + ac)x + abc

Thus,

(x + a)(x + b)(x + c) = x3 + (a + b + c)x2 + (ab + bc + ac)x + abc

Example 11 :

Expand (x + 4)(x + 5)(x + 6).

Solution :

We know that

(x + a)(x + b)(x + c) = x3 + (a + b + c)x2 + (ab + bc + ac)x + abc

Substitute a = 4, b = 5 and c = 6.

(x + 4)(x + 5)(x + 6) = x3 + (4 + 5 + 6)x2 + [(4)(5) + (5)(6) + (4)(6)]x + (4)(5)(6)

= x3 + 15x2 + (20 + 30 + 24)x + 120

= x3 + 15x2 + 74x + 120

Example 12 :

Expand (3x - 1)(3x + 2)(3x - 4).

Solution :

We know that

(x + a)(x + b)(x + c) = x3 + (a + b + c)x2 + (ab + bc + ac)x + abc

Substitute x = 3x, a = -1, b = 2 and c = -4.

(3x - 1)(3x + 2)(3x - 4) 

= (3x)3 + (-1 + 2 - 4)(3x)2 + [(-1)(2) + (2)(-4) + (-1)(-4)](3x) + (-1)(2)(-4)

= 27x3 + (-3)(9x2) + (-2 - 8 + 4)(3x) + 8

= 27x3 - 27x2 + (-6)(3x) + 8

= 27x3 - 27x2 - 18x + 8

Cube of a Binomial

Expansion of (x + y)3 :

Already we know that

(x + a)(x + b)(x + c) = x3 + (a + b + c)x2 + (ab + bc + ac)x + abc

Substituting a = b = c = y.

(x + y)(x + y)(x + y) = x3 + (y + y + y)x2 + (yy + yy + yy)x + yyy

(x + y)3 = x3 + (3y)x2 + (y2y2 + y2)x + y3

= x3 + 3x2y + (3y2)x + y3

= x3 + 3x2y + 3xy2 + y3

or 

= x3 + 3xy(x + y)+ y3

Thus,

(x + y)3 = x3 + 3x2y + 3xy2 + y3

or

(x + y)3 = x3 + 3xy(x + y)+ y3

Example 13 :

Expand (x - y)3.

Solution :

We know that

(x + y)3 = x3 + 3x2y + 3xy2 + y3

Replace 'y' by '-y'.

(x + (-y))3 = x3 + 3x2(-y) + 3x(-y)2 + (-y)3

 = x3 - 3x2y + 3xy2 - y3

or

=  = x3 - 3xy(x - y) - y3

Example 14 :

Expand (5a - 3b)3.

Solution :

We know that

(x + y)3 = x3 + 3x2y + 3xy2 + y3

Substitute x = 5a, and y = -3b.

(5a - 3b)3 = (5a)3 + 3(5a)2(-3b) + 3(5a)(-3b)2 + (-3b)3

= 53a3 + 3(25a2)(-3b) + 3(5a)(9b2) + (-27b3)

= 125a3 - 225a2b + 135ab2 - 27b3

Other Identities

1) a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ac)

2) If (a + b + c) = 0, then a3 + b3 + c3 = 3abc

Some identities involving sum, difference and product are stated here :

x3 + y= (x + y)3 - 3xy(x + y)2

x3 - y= (x - y)3 + 3xy(x - y)2

Example 15 :

Find the product of :

(2x + 3y + 4z)(4x2 + 9y2 + 16z2 - 6xy - 12yz - 8xz)

Solution :

We know that

(a + b + c)(a2 + b2 + c2 - ab - bc - ac) = a3 + b3 + c3 - 3abc

Substitute a = 2x, b = 3y and c = 4z.

(2x + 3y + 4z)(4x2 + 9y2 + 16z2  - 6xy - 12yz - 8xz)

= (2x)3 + (3y)3 + (4z)3 - 3(2x)(3y)(4z)

= 8x3 + 27y3 + 64z3 - 72xyz

Example 16 :

Evaluate : 103 - 153 + 53.

Solution :

We know that, If (a + b + c) = 0, then a3 + b3 + c3 = 3abc.

If a = 10, b = -15 and c = 5, then

a + b + c = 10 - 15 + 5 = 0

Therefore,

103 + (-15)3 + 53 = 3(10)(-15)(5)

103 - 153 + 5= -2250

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More