Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.
An algebraic identity is an equality that remains true regardless of the values chosen for its variables. Algebraic identities can be used to get the expansion of a polynomial for the given exponent.
(a + b)2 = a2 + 2ab + b2
(a - b)2 = a2 - 2ab + b2
(a + b)(a - b) = a2 - b2
(x + a)(x + b) = x2 + (a + b)x + ab
Expand the following using the algebraic identities above :
Example 1 :
(3x + 4y)2
Solution :
We have
(a + b)2 = a2 + 2ab + b2
Substitute a = 3x and b = 4y.
(3x + 4y)2 = (3x)2 + 2(3x)(4y) + (4y)2
= 32x2 + 2(3x)(4y) + 42y2
= 9x2 + 24xy + 16y2
Example 2 :
(2p - 3q)2
Solution :
We have
(a - b)2 = a2 - 2ab + b2
Substitute a = 2p and b = 3q.
(2p - 3q)2 = (2p)2 - 2(2p)(3q) + (3q)2
= 22p2 - 12pq + 32q2
= 4p2 - 12pq + 9q2
Example 3 :
(5x + 4y)(5x - 4y)
Solution :
We have
(a + b)(a - b) = a2 - b2
Substitute a = 5x and b = 4y.
(5x + 4y)(5x - 4y) = (5x)2 - (4y)2
= 52x2 - 42y2
= 25x2 - 16y2
Example 4 :
(m + 3)(m + 5)
Solution :
We have
(x + a)(x + b) = x2 + (a + b)x + ab
Substitute x = m, a = 3 and b = 5.
(m + 3)(m + 5) = m2 + (3 + 5)m + (3)(5)
= x2 + 8m + 15
Example 5 :
(m - 7)(m + 2)
Solution :
We have
(x + a)(x + b) = x2 + (a + b)x + ab
Substitute x = m, a = -7 and b = 7.
(m - 7)(m + 2) = m2 + (-7 + 2)m + (-7)(2)
= m2 - 5m - 14
Expansion of (a + b + c)2 :
We know that
(x + y)2 = x2 + 2xy + y2
Substitute x = a + b and y = c.
(a + b + c)2 = (a + b)2 + 2(a + b)c + c2
= a2 + 2ab + b2 + 2ac + 2bc + c2
= a2 + b2 + c2 + 2ab + 2bc + 2ac
Thus,
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ac
Example 6 :
Expand (a - b + c)2.
Solution :
We have
(a + b + c)2 = = a2 + b2 + c2 + 2ab + 2bc + 2ac
Replace 'b' by '-b'.
(a + (-b) + c)2 = = a2 + (-b)2 + c2 + 2a(-b) + 2(-b)c + 2ac
(a - b + c)2 = = a2 + b2 + c2 - 2ab - 2bc + 2ac
Example 7 :
Expand (a + b - c)2.
Solution :
We have
(a + b + c)2 = = a2 + b2 + c2 + 2ab + 2bc + 2ac
Replace 'c' by '-c'.
(a + b + (-c))2 = = a2 + b2 + (-c)2 + 2ab + 2b(-c) + 2a(-c)
(a + b + (-c))2 = = a2 + b2 + c2 + 2ab - 2bc - 2ac
Example 8 :
Expand (a - b - c)2.
Solution :
We have
(a + b + c)2 = = a2 + b2 + c2 + 2ab + 2bc + 2ac
Replace 'b' by '-b' and 'c' by '-c'.
(a + (-b) + (-c))2 = = a2 + (-b)2 + (-c)2 + 2a(-b) + 2(-b)(-c) + 2a(-c)
(a - b - c)2 = = a2 + b2 + c2 - 2ab + 2bc - 2ac
Example 9 :
Expand (2x + 3y + 4z)2.
Solution :
We have
(a + b + c)2 = = a2 + b2 + c2 + 2ab + 2bc + 2ac
Substitute a = 2x, b = 3y and c = 4z.
(2x + 3y + 4z)2 = (2x)2 + (3y)2 + (4z)2 + 2(2x)(3y) + 2(3y)(4z) + 2(2x)(4z)
= 22x2 + 32y2 + 42z2 + 12xy + 24yz + 16xz
= 4x2 + 9y2 + 16z2 + 12xy + 24yz + 16xz
Example 10 :
Find the area of square whose side length is (3p + 2q - 4r).
Solution :
Area of Square :
= side x side
= (3p + 2q - 4r)(3p + 2q - 4r)
= (3p + 2q - 4r)2
We know that
(a + b + c)2 = = a2 + b2 + c2 + 2ab + 2bc + 2ac
Substitute a = 3p, b = 2q and c = -4r.
(3p + 2q + (-4r)2 = (3p)2 + (2q)2 + (-4r)2 + 2(3p)(2q) + 2(2q)(-4r) + 2(3p)(-4r)
= 9p2 + 4q2 + 16r2 + 12pq - 16qr - 24pr
Therefore, Area of Square = [9p2 + 4q2 + 16r2 + 12pq - 16qr - 24pr] square units.
Expansion of (x + a)(x + b)(x + c) :
(x + a)(x + b)(x + c) = [(x + a)(x + b)](x + c)
= [x2 + (a + b)x + ab](x + c)
= x2(x) + (a + b)(x)(x) + ab(x) + x2(c) + (a + b)(x)(c) + ab(c)
= x3 + ax2 + bx2 + abx + cx2 + acx + bcx + abc
= x3 + (a + b + c)x2 + (ab + bc + ac)x + abc
Thus,
(x + a)(x + b)(x + c) = x3 + (a + b + c)x2 + (ab + bc + ac)x + abc
Example 11 :
Expand (x + 4)(x + 5)(x + 6).
Solution :
We know that
(x + a)(x + b)(x + c) = x3 + (a + b + c)x2 + (ab + bc + ac)x + abc
Substitute a = 4, b = 5 and c = 6.
(x + 4)(x + 5)(x + 6) = x3 + (4 + 5 + 6)x2 + [(4)(5) + (5)(6) + (4)(6)]x + (4)(5)(6)
= x3 + 15x2 + (20 + 30 + 24)x + 120
= x3 + 15x2 + 74x + 120
Example 12 :
Expand (3x - 1)(3x + 2)(3x - 4).
Solution :
We know that
(x + a)(x + b)(x + c) = x3 + (a + b + c)x2 + (ab + bc + ac)x + abc
Substitute x = 3x, a = -1, b = 2 and c = -4.
(3x - 1)(3x + 2)(3x - 4)
= (3x)3 + (-1 + 2 - 4)(3x)2 + [(-1)(2) + (2)(-4) + (-1)(-4)](3x) + (-1)(2)(-4)
= 27x3 + (-3)(9x2) + (-2 - 8 + 4)(3x) + 8
= 27x3 - 27x2 + (-6)(3x) + 8
= 27x3 - 27x2 - 18x + 8
Expansion of (x + y)3 :
Already we know that
(x + a)(x + b)(x + c) = x3 + (a + b + c)x2 + (ab + bc + ac)x + abc
Substituting a = b = c = y.
(x + y)(x + y)(x + y) = x3 + (y + y + y)x2 + (yy + yy + yy)x + yyy
(x + y)3 = x3 + (3y)x2 + (y2 + y2 + y2)x + y3
= x3 + 3x2y + (3y2)x + y3
= x3 + 3x2y + 3xy2 + y3
or
= x3 + 3xy(x + y)2 + y3
Thus,
(x + y)3 = x3 + 3x2y + 3xy2 + y3
or
(x + y)3 = x3 + 3xy(x + y)2 + y3
Example 13 :
Expand (x - y)3.
Solution :
We know that
(x + y)3 = x3 + 3x2y + 3xy2 + y3
Replace 'y' by '-y'.
(x + (-y))3 = x3 + 3x2(-y) + 3x(-y)2 + (-y)3
= x3 - 3x2y + 3xy2 - y3
or
= = x3 - 3xy(x - y) - y3
Example 14 :
Expand (5a - 3b)3.
Solution :
We know that
(x + y)3 = x3 + 3x2y + 3xy2 + y3
Substitute x = 5a, and y = -3b.
(5a - 3b)3 = (5a)3 + 3(5a)2(-3b) + 3(5a)(-3b)2 + (-3b)3
= 53a3 + 3(25a2)(-3b) + 3(5a)(9b2) + (-27b3)
= 125a3 - 225a2b + 135ab2 - 27b3
1) a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ac)
2) If (a + b + c) = 0, then a3 + b3 + c3 = 3abc
Some identities involving sum, difference and product are stated here :
x3 + y3 = (x + y)3 - 3xy(x + y)2
x3 - y3 = (x - y)3 + 3xy(x - y)2
Example 15 :
Find the product of :
(2x + 3y + 4z)(4x2 + 9y2 + 16z2 - 6xy - 12yz - 8xz)
Solution :
We know that
(a + b + c)(a2 + b2 + c2 - ab - bc - ac) = a3 + b3 + c3 - 3abc
Substitute a = 2x, b = 3y and c = 4z.
(2x + 3y + 4z)(4x2 + 9y2 + 16z2 - 6xy - 12yz - 8xz)
= (2x)3 + (3y)3 + (4z)3 - 3(2x)(3y)(4z)
= 8x3 + 27y3 + 64z3 - 72xyz
Example 16 :
Evaluate : 103 - 153 + 53.
Solution :
We know that, If (a + b + c) = 0, then a3 + b3 + c3 = 3abc.
If a = 10, b = -15 and c = 5, then
a + b + c = 10 - 15 + 5 = 0
Therefore,
103 + (-15)3 + 53 = 3(10)(-15)(5)
103 - 153 + 53 = -2250
Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM