Find
(i) (f + g)(x)
(ii) (f – g)(x)
and state the domain of each. Then evaluate f + g and f - g for the given value of x.
Problem 1 :
f(x) = -5∜x, g(x) = 19∜x; x = 16
Solution :
Given, f(x) = -5∜x and g(x) = 19∜x
x = 16
(i) (f + g)(x) = f(x) + g(x)
(f + g)(x) = -5∜x + 19∜x
(f + g)(x) = 14∜x
When x = 16,
(f + g)(16) = 14∜16
= 14∜(2 ⋅ 2 ⋅ 2 ⋅ 2)
(f + g)(16) = 14(2)
(ii) (f - g)(x) = f(x) - g(x)
= -5∜x - 19∜x
(f - g)(x) = = -24∜x
(f - g)(16) = -24∜16
= -24∜2 ⋅ 2 ⋅ 2 ⋅ 2
(f - g)(16) = -24(2)
(f - g)(16) = -48
Domain is set of all positive values.
Problem 2 :
f(x) = ∛2x, g(x) = -11∛2x; x = -4
Solution :
Given, f(x) = ∛2x and g(x) = -11∛2x
x = -4
(i) (f + g)(x) = f(x) + g(x)
(f + g)(x) = ∛2x + (-11∛2x)
(f + g)(x) = -10∛2x
When, x = -4
(f + g)(-4) = -10∛2(-4)
= -10∛(-8)
= 10∛(-2 ⋅ -2 ⋅ -2)
= 10(-2)
(f + g)(-4) = -20
(ii) (f - g)(x) = f(x) - g(x)
(f - g)(x) = ∛2x - (-11∛2x)
(f - g)(x) = 12∛2x
(f - g)(-4) = 12∛2(-4)
= 12∛(-8)
= -12∛(-2 ⋅ -2 ⋅ -2)
(f - g)(-4) = -12(-2)
(f - g)(-4) = 24
Domain is all real values.
Problem 3 :
f(x) = 6x - 4x2 – 7x3, g(x) = 9x2 – 5x; x = -1
Solution :
f(x) = 6x - 4x2 – 7x3 and g(x) = 9x2 – 5x
x = -1
(i) (f + g)(x) = f(x) + g(x)
(f + g)(x) = (6x - 4x2 – 7x3) + (9x2 – 5x)
= 6x - 4x2 – 7x3 + 9x2 – 5x
= x + 5x2 – 7x3
When x = -1
(f + g)(-1) = (-1) + 5(-1)2 – 7(-1)3
(f + g)(-1) = -1 + 5 + 7
(f + g)(-1) = 11
(ii) (f - g)(x) = f(x) - g(x)
= (6x - 4x2 – 7x3) - (9x2 – 5x)
= 6x - 4x2 – 7x3 - 9x2 + 5x
= 11x – 13x2 – 7x3
(f - g)(-1) = 11(-1) – 13(-1)2 – 7(-1)3
= -11 - 13 + 17
(f - g)(-1) = -7
Domain is all real values.
Problem 4 :
f(x) = 11x + 2x2 , g(x) = -7x – 3x2 + 4; x = 2
Solution :
f(x) = 11x + 2x2 and g(x) = -7x – 3x2 + 4
x = 2
(i) (f + g)(x) = f(x) + g(x)
(f + g)(x) = (11x + 2x2) + (-7x – 3x2 + 4)
(f + g)(x) = 11x + 2x2 - 7x – 3x2 + 4
= 4x – x2 + 4
When, x = 2
(f + g)(2) = 4(2) – (2)2 + 4
= 8 – 4 + 4
(f + g)(2) = 8
(ii) (f - g)(x) = f(x) - g(x)
(f - g)(x) = (11x + 2x2) - (-7x – 3x2 + 4)
= 11x + 2x2 + 7x + 3x2 - 4
(f - g)(x) = 18x + 5x2 – 4
(f - g)(2) = 18(2) + 5(2)2 - 4
= 36 + 20 - 4
(f - g)(2) = 52
Domain is all real values.
Problem 5 :
f(x) = 5 - 5x, g(x) = -3x2 + 5 Find (f + g)(x).
a) -3x2 - 5x + 10 b) -8x2 - 5x + 10 c) -3x2 + 5 d) -8x + 10
Solution :
(f + g)(x) = f(x) + g(x)
= 5 - 5x - 3x2 + 5
= -3x2 + 5 + 5 - 5x
= -3x2 - 5x + 10
So, option a is correct.
Problem 5 :
Given the function
𝑓 = {(−3, 4) (−2, 2) (−1, 0) (0, 1) (1, 3) (2, 4) (3, −1)}
and the function
𝑔 = {(−3, −2) (−2, 0) (−1, −4) (0, 0) (1, −3) (2, 1) (3, 2)}
compute the following values.
|
a) (f + g)(-3) = b) (f - g) (2) = c) fg(-1) = |
d) (g - f)(3) = e) (f/g)(-2) = f) (g/f)(3) = |
Solution :
(f + g)(x) = f(x) + g(x)
a)
(f + g)(-3) = f(-3) + g(-3)
= 4 + (-2)
= 4 - 2
= 2
b)
(f - g) (2) = f(2) - g(2)
= 4 + 1
= 5
c)
fg(-1) = f(-1) g(-1)
= 0(-4)
= 0
d)
(g - f)(3) = g(3) - f(3)
= 2 - (-1)
= 2 + 1
= 3
e)
(f/g)(-2) = f(-2) / g(-2)
= 2/0
= undefined
f)
(g/f)(3) = g(3) / f(3)
= 2/(-1)
= -2
Problem 6 :
Use the graphs below to compute the following values.

|
a) (f + g) (1) b) (f - g) (2) c) (g - f) (3) |
d) (f g) (4) e) (f/g) (1) f) (g/f) (4) |
Solution :
a)
(f + g) (1) = f(1) + g(1)
= 2 + 3
= 5
b)
(f - g) (2) = f(2) - g(2)
= 3 - 3
= 0
c)
(g - f) (3) = g(3) - f(3)
= 0 - 3
= -3
d)
(f g) (4) = f(4) g(4)
= 0(4)
= 0
e)
(f/g) (1) = f(1) g(1)
= 2(3)
= 6
f)
(g/f) (4) = g(4) f(4)
= 4(0)
= 0
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM