Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.
The formula for
(a + b)2 = a2 + 2ab + b 2
Expand and simplify the following perfect squares :
Problem 1 :
(1 + √2)2
Solution :
(1 + √2)2
Using algebraic identities.
= (1)2 + (√2)2 + 2(1)(√2)
= 1 + 2 + 2√2
= 3 + 2√2
Problem 2 :
(√3 + 2)2
Solution :
(√3 + 2)2
Using algebraic identities.
= (√3)2 + (2)2 + 2(√3)(2)
= 3 + 4 + 4√3
= 7 + 4√3
Problem 3 :
(1 + √5)2
Solution :
(1 + √5)2
Using algebraic identities.
= (1)2 + (√5)2 + 2(1)(√5)
= 1 + 5 + 2√5
= 6 + 2√5
Problem 4 :
(1 + 3√2)2
Solution :
(1 + 3√2)2
Using algebraic identities.
= (1)2 + (3√2)2 + 2(1)(3√2)
= 1 + 9(2) + 6√2
= 1 + 18 + 6√2
= 19 + 6√2
Problem 5 :
(4√3 + 5)2
Solution :
(4√3 + 5)2
Using algebraic identities.
= (4√3)2 + (5)2 + 2(4√3)(5)
= 16(3) + 25 + 40(√3)
= 48 + 25 + 40(√3)
= 73 + 40(√3)
Problem 6 :
(2√11 + 3)2
Solution :
(2√11 + 3)2
Using algebraic identities.
= (2√11)2 + (3)2 + 2(2√11)(3)
= 4(11) + 9 + 12(√11)
= 44 + 9 + 12(√11)
= 53 + 12(√11)
Problem 7 :
1/(√7 + 1)
Solution :
1/(√7 + 1)
Conjugate of √7 + 1 is √7 - 1
= [1/(√7 + 1)] ⋅ [(√7 - 1)/(√7 - 1)]
= [(√7 - 1)/(√7 - 1)(√7 + 1)]
= [(√7 - 1)/(√72 - 12)]
= [(√7 - 1)/(7 - 1)]
= (√7 - 1)/6
Problem 8 :
1/(√6 - 2)
Solution :
1/(√6 - 2)
Conjugate of √6 - 2 is √6 + 2
= [1/(√6 - 2)] ⋅ [(√6 + 2)/(√6 + 2)]
= [(√6 + 2)/(√6 - 2)(√6 + 2)]
= [(√6 + 2)/(√62 - 22)
= (√6 + 2)/(6 - 4)
= (√6 + 2)/2
Problem 9 :
What is the square root of (8 + 2√15) ?
Solution :
= (8 + 2√15)
= √(5 + 3 + 2√15)
= √(√52 + √32 + 2√(5 x 3)
= √[√52 + √32 + 2√5 x √3]
= √(√5 + √3)2
= √5 + √3
Problem 10 :
√(5x + 3) = √(4x + 5)
Solution :
√(5x + 3) = √(4x + 5)
Squaring on both sides, we get
5x + 3 = 4x + 5
5x - 4x = 5 - 3
x = 2
So, the value of x is 2.
Problem 11 :
√(x - 1) + 5 = x - 2
Solution :
√(x - 1) + 5 = x - 2
√(x - 1) = x - 2 - 5
√(x - 1) = x - 7
Squaring on both sides, we get
(x - 1) = (x - 7)2
x - 1 = x2 - 14x + 49
x - 1 = x2 - 14x + 49
x2 - 14x - x + 49 + 1 = 0
x2 - 15x + 50 = 0
(x - 10)(x - 5) = 0
Equating each factor to 0, we get
x = 10 and x = 5.
Problem 12 :
Simplify :
√(49a2 + 56a + 16)
Solution :
= √(49a2 + 56a + 16)
= √((7a)2 + 56a + 42)
= √(7a)2 + 2(7a)(4) + 42)
= √(7a + 4)2
= 7a + 4
Problem 13 :
Simplify :
(5√2 + √3)(2√2 - 3√3)
Solution :
= (5√2 + √3)(2√2 - 3√3)
Using distributive property, we get
= (5√2) (2√2) - 5√2 (3√3) + √3(2√2) - 3√3√3
= 10(2) - 15√(2 x 3) + 2√(2 x 3) - 3(3)
= 20 - 15√6 + 2√6 - 9
= 20 - 9 - 15√6 + 2√6
= 11 - 13√6
Problem 13 :
Solve
√(d2 - 19) - 2d + 11 = 0
Solution :
√(d2 - 19) - 2d + 11 = 0
√(d2 - 19) = 2d - 11
Squaring on both sides, we get
(d2 - 19) = (2d - 11)2
(d2 - 19) = (2d)2 - 2(2d)(11) + (11)2
d2 - 19 = 4d2 - 44d + 121
4d2 - d2 - 44d + 121 + 19 = 0
3d2 - 44d + 140 = 0
3d2 - 30d - 14d + 140 = 0
3d(d - 10) - 14(d - 10) = 0
(3d - 14)(d - 10) = 0
3d = 14 and d - 10 = 0
d = 14/3 and d = 10
Problem 14 :
Solve
√(3x - 5) = -5
Solution :
√(3x - 5) = -5
Squaring on both sides, we get
3x - 5 = (-5)2
3x - 5 = 25
3x = 25 + 5
3x = 30
x = 30/5
x = 10
So, the solution is 10.
Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM