SAT PRACTICE QUESTIONS USING ALGEBRAIC IDENTITIES

Problem 1 :

(3x + 2y)2

In the expression above can be written as ax2 + bxy + cy2, where a, b and c are constants, where a + b + c ?

Solution

Problem 2 :

x2 + kx + 9 = (x + a)2

In the equation above, k and a are positive constants. If the equation is true for all values of  x, what is the value of k ?

a)  0      b) 3     c)  6       d)  9

Solution

Problem 3 :

If (x + 3) (x - 3) = 91, what is the value of x2 ?

Solution

Problem 4 :

If (c + d) = -5 and (c - d) = -12, then what is the value of c2 - d2?

Solution

Problem 5 :

If (mx + c) (nx + 3) = 12x2 + 5x - 3 for all values of x, where m, n and c are constants, what is the value of m + n ?

a) 7      b)  8     c)  12       d)  13

Solution

Problem 6 :

In the equation above, a, b and c are constants. If the equation is true for all values of x, what is the value of a + b + c?

Solution

Problem 7 :

If (x + y)2 - (x - y)2 = 60 and x and y are positive integers, which of the following could be the value of x + y ?

a)  6      b)  8       c)  10    d)  12

Solution

Problem 8 :

(a + b)2 - (a - b)2

The expression above equivalent to which of following ?

a) 2ab    b)  4ab     c)  4ab + 2b2      d)  2a2 + 2b2

Solution

Problem 9 :

(x - c)2 = x + 3

If c = 3, what is the solution set of the equation above ?

a)  {1}    b)  {6}    c)  {1, 6}     d)  {-3, 1, 6}

Solution

Problem 10 :

x2 - y2 = 48

x + y = 12

If (x, y) is the solution to the system of equations above, what is the value of xy? 

a)  28    b)  32    c)  45    d)  64

Solution

Answer Key

1)  35

2)  k = 6

3)  x2 = 100

4)  c2 - d= 60

5)   m + n = 7

6)   a + b + c = 55.

7)   x + y is 8.

8)  4ab

9)  x = 6 and x = 1

10) xy = 32.

Problem 1 :

If y > 0 and y2 - 36 = 0, what is the value of y ?

Solution

Problem 2 :

Which expression is equivalent to 16x6 - 24x3y3 + 9y6 ?

Solution

Problem 3 :

(kx^2 + xy) (ky^2 + xy) = k25

In the equation above k > 1 and x = 3. What is the positive value of y ?

a)  1    b)  2    c)   4    d)  5

Solution

Problem 4 :

In the equation 3(x - 5)2 + 7 = ax2 + bx + c, a, b and c are constants. If the equation is true for all values of x, what is the value of c ?

Solution

Problem 5 :

If (cy - d) (cy + d) = 25y2 - 16

Which of the following could be the value of c in the equation above, where c and d are constants ?

a)  4     b)  5      c)  16     d)  25

Solution

Problem 6 :

If x2 + y2 = c  and -xy = b, which of the following is equivalent to c + 2b?

a)  (-2x - y)2    b)  (-x - y)2      c)  (x - y)2      d)   (x + y)2 

Solution

Problem 7 :

Which of the following is an equivalent form of 

(2.6a - 3.5)2 - (7.3a2 - 4.1)

a)  -2.1a2 - 2.9      b)  -2.1a2 + 11.1       c)  -0.54a2 - 18.2a - 8.15

d)  -0.54a2 + 18.2a + 16.35

Solution

Problem 8 :

If x^a2 / x^b2 = x16, x > 1 and a + b = 2, what is the value of a - b?

a)  8     b)  14        c)  16        d)  18

Solution

Problem 9 :

9a4 + 12a2 b2 + 4b4 

Which of the following is equivalent to the expression shown above ?

a)  (3a2 + 2b2)2            b)  (3a + 2b)4        c)  (9a2 + 4b2)2          d)  (9a + 4b)4

Solution

Problem 10 :

(d − 30)(d + 30) − 7 = −7 What is a solution to the given equation?

Solution

Answer Key

1) y = 6.

2)  (4x3 - 3y3)2

3) x = 3 and  y = 2, x = 3 and  y = -8

4)  a = 3, b = -30 and c = 82.

5)  c = 5 and d = 4

6)  (x - y)2 , option c

7)  -0.54a2 - 18.2a + 16.35, option d

8)  a - b = 8, option a

9)  (3a2 + 2b2)2, option a

10)   the solutions are -30 and 30.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More